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SOME IDENTITIES FOR DEGENERATE COSINE(SINE)-EULER
POLYNOMIALS

WON KYUN JEONG

ABSTRACT. The aim of this paper is to introduce the degenerate cosine-Euler and
degenerate sine-Euler polymonials which are related to the cosine-Euler and sine—
Euler polynomials, respectively. We investigate some identities and properties for
the polynomials. We also give the relation between the degenerate cosine(resp.
sine)-Euler polynomials and the cosine(resp. sine)-Euler polynomials.

1. INTRODUCTION

As is well known, the Euler polynomials are defined by the generating function
to be

M) 2t =Y B

et +1

When = =0, E,, = E,(0) are called the Euler numbers. From (1), we can derive
the following equation

(2) En(z) = ZEkx (n >0).

In [1], L. Carlitz defined the degenerate Euler polynomials which are given by the
generating function to be

2 2 ¢
(3) m(1+>\ﬂ —T;]ffn,\( )y

When z = 0, &,y = £,.1(0) are called the degenerate Euler numbers. It is easy to
show that limy_,0 &, A(2) = En(z), (n > 0). From (3), we note that

n

(4) Ennl@) =) (Z) ExA(@)n—kr, (n > 0),

k=0

where (z)or =1, (@)pr =z(x —A)--- (. — (n—1)A),(n > 1).
For n > 0, the Stirling numbers of the second kind are defined by the generating
function to be

(5) ; (¢ —1)* Zsz(n k: (see [5, §]),
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and the Stirling numbers of the first kind are defined by
(6) (log(l + )" ZSI n, k; (see [5]).

In [7], T. Kim et al. defined the cosine—Euler polynomials and sine—Euler polyno-
mials which are given by the generating function to be

(7) —e eos(yt) = ZE )(x, y

et

(8) —e Psin(yt) = ZE )(x, y

et

respectively. They also introduced the families of polynomials which are given by
the following generating functions:

) e eostt) =3 ol yyg,

(10) e sin(yt) = ZS (z, y

It follows from (9) and (10) that

(23]
_ 1k n n—2k—1, 2k
53
(12) Catan) = 1 (53 )
k=0
The FEuler formula is defined by
(13) €' = cosx +isin,
where i = /=1, (see [9, 10]). Thus, by (13), we obtain
zaar —iax war _ ,—iaT
(14) cosax = L, sinaz = & ¢

2 21
From (14), we consider the degenerate cosine and degenerate sine functions which
are given by
(14 A)x — (14 At)"x
2

(14> + (14 At)~x

(15) cosi(t) = 5 ;

siny (t) =

respectively, (see [6]).
We consider the degenerate Euler formula [6] which is given by

(16) 1+ /\t)i = cosy(t) + isiny(t).

Note that

(17) lim (1 + )\t)% = e' = cos(t) + isin(t).
A—0
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It follows from (16) and (17) that
(18) lim cos)(t) = cost, lim siny(t) = sin(¢).
A—=0 A—=0
Now, we define the degenerate cosine and degenerate sine function as

L+ A% + (14 x)" %

(19) cosf\y) t) = 5 ,
THA)Y — 1+~ %
(20) s (1) = LT 2i( )

respectively, (see [4]). Since (1 + At)x = S0 0@k, by (19) and (20), we get

. "
(21) cosy’)( Z{ iY)nx + ( Zy)n,/\}m,

. "
(22) sm)\ Z{ (1Y) — zy)nA}E

In this paper, we introduce the concepts of degenerate cosine-Euler plynomials and
the degenerate sine-Euler polynomials and investigate some identities and properties
for the polynomials. We also give the relation between degenerate cosine(resp. sine)-
Euler polynomials and sine(resp. cosine)-Euler polynomials.

2. DEGENERATE COSINE-EULER AND SINE-EULER POLYNOMIALS

Definition 2.1. The degenerate cosine-Euler polynomials and degenerate sine—
Euler polynomials are defined by the generating function to be

(23) 2 it a)iees® ) = i £ (2.5
(1+A6)% +1 g wA )
2 z
(24 7(1 + M) sin (t
) (14 At)> + A Z
respectively.

Note that 57(5\)(1‘, 0) = &xa(x) and 8755/\)(95, 0) =0, (n > 0). Moreover,

)l\in}]é'éc;\)(x, y) = E\9)(z,y) and hm 5 (:1: y) = ES(z,y), (n>0).
S0
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By using the above generating functions, we compute a few polynomials of the
degenerate cosine-Euler and degenerate sine-Euler polynomials as follows:

1
1
55?\)(33,24) = A= (1+Nz+22 -2

2
£,y = 7~ N+ AB+20)z — S(1+2N)a? — By + S(1+ 2N + 2,
and
Séi)(fc’y) = 0,51(53(96,1/) =y,
&5 () = 20y — (1+2))y,

1
) (w,y) = =3(1+ 3\)ay + SAO+4)y + 302y — 5.

Theorem 2.2. Forn > 0, we have

(25) eV (,y) = ZA" B (2, y)S1(n, k),
k=0

(26) B (@,y) =Y N FEI (2,)81(n, k).
k=0

Proof. By replacing t by * 5 log(1 + At) in (7), we obtain

—k

2 A
B (e, y) - (log(1 + A1)

% co (u) _
T /\t) (1 + At) (t)

M T

e A
E](CC)(xay)/\ kzsl(nak')T
0 n==k ’

>
Il

Thus, by (23), we have

’I’L

> el = 33 s

n=0 k=0
By comparing the coefficients of ;—", on both sides of the above equation, we get
equation (25).

Similarly, we can prove equation (26). a

Theorem 2.3. For n > 0, we have

(27) EO(@,y) = > A" (2,9)Sa(n, k),
k=0
(28) ES) (x,y) = Y XFEL) (,4)Sa(n, ).

k=0
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Proof. Replacing ¢ by %(e’\t —1) in (23), we get

iE(C)(I y)ﬁ = Le“’tcos(yt)
= AT ) et +1
00 —k
c A
= Y &0 @y T -1
k=0 )
oo - 0 A
B SIS e
k=0 n=k ’
o0 n
n—k o(C "
= Z A ké’,g’/\)(x,y)Sg(n,k)H.

n=0 k=0

tn

Comparing the coefficients of

equation (27).
Similarly, we can prove equation (28). d

on both sides of the above equation, we get

Theorem 2.4. Forn >0, r € N, we have

n

n\ o(C
(29) 57(“6:\) (z+ry) = Z (k) 515,,\)(% Y-k
k=0
s SYAWE
(30) e+ =3 (1) @i
k=0
Proof.
= tm 2 . -
£ +ry)— = — (1 + X)X cos(y)(t) 1+ At)x
nz:% mal ) (1+At)x +1 A
e n k
(©) t t
= D &0 )y > JeATy
n=0 k=0
(o] n tn
= Z <Z> 5;5,6;) (z, y)(r)n—k,)\g-
n=0 k=0 ’

Comparing the coefficients of %
equation (29).

on both sides of the above equation, we get

Similarly, we can prove equation (30). d
Let
[e.0] t"
(31) (L+ M3 cosi? (1) = 3~ Cunley) —,
n=0
T . (y) > t"
(32) (14 At)5 sing?” (1) = Y Spala, y)m.

n=0
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Note that limy_oCpy \(z,y) = Cr(z,y) and limy_o Spa(z,y) = Sp(z,y), (n > 0).
From (21), (22), (31) and (32), we have, for n > 0,

n

3 G =53 (1) @ral)+ sl
k=0

B Sl =52 (1)@l - Gl

21
k=0

Theorem 2.5. Forn > 1, we have

(35) 2 e =3 (’;) N E ) — k- 1),
(36) 2 ) = (’;) (N ES (@)~ k1)
k=0
n—1
(37) N CHEE N OV EIEE
k=0
Jd (9 2
(39) e = (5) e = k-1
=0

Proof. Since

) .
%{(th)i M) cos! (t)}

2 z
= — 1+ M)5co ”() log(1 + At)
(1+ )% +1 A

o0 o0
©) t" AT ¢
tz Enx (@, y)a E (—1)mm—+1m
—0

n n—k n — k)¢t
- S5 (e

n=0 k=0

we have

(39) %sﬁ,x(z, DEDY <” . 1) (=N * D, y) (n — k).

k=0

Replacing n by n — 1 in (39), we get equation (35).
Similarly, we can prove equations (36), (37), and (38). O

3. IDENTITIES AND RELATIONS RELATED TO THE DEGENERATE COSINE-EULER
AND SINE-EULER POLYNOMIALS

In [3], N. Kilar et al. obtained some special identities including the cosine-Euler
polynomials and the sine-Euler polynomials. We obtain a theorem which is a gen-
eralization of the result of N. Kilar et al.
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Theorem 3.1. Forn > 0, we have

n

— (1) o(5 c 1 n s
w Y (1) =53 (1) aa@eow .
k

k
k=0 =0

Proof. Since s1n (t) = 2sin{ 3 (t) cos (t) we obtain the following equation:

2 . 9 )
— (A Fsin () - (1 + M) % cosi?(¢)
T+X)x+1 T+ A)x+1

1 2 i 5 )
(1 + XN smg?y) (t).

(T+ X)X -

T2+ A)F 41 (1A% +1

From the above equation, we get

Z@SSAH/) ch)wy)%zézfn,x t—,ZE A(x2y
: ’ n=0

Thus,
N (1 o(9) ©) "l (1 ©) ¢
Zo Z—o <k> 51c,,\ (x’y)gn—k,,\(%y)a =3 Zo Z—o (k) gk,/\(-’E)gn_k)\(.T, 2y)H

Comparing the coefficients of % on both sides of the above equation, we get the
O

result (40).

Theorem 3.2. Forn >0, u,v,k,l € N, we have

2ES) ((u + v)z, (k+ 1))
= j:o <?) Li_o <731> { (ua: ky)E an(m: ly) + E C)(ux ky)E(_m(vx ly) }1
+ ; (:1) {E (ux ky) e (U:v ly) —i—E(C (uz, ky)E,, BY ) (0T, ly)}
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Proof.
t'n/
25 ES) ((u+v)x (k—i—l)y)ﬁ
I wrt g (k) ()2 vat (1)
= (e +1){et+1e sin, (t)et+1 cosy " (t)
2 (ky) 2
€t+16uxtCOSAy(t)et+l sm)\ (t)}

= (e + 1){2 EY) (uz, ky Z ES) (v, ly)
n=0

o9} t o9}
+ZE,(ZC)(ux,ky o Z ES) (vz, ly) —}

=0

= et{z Z <:l>E7(f)(ux,ky)E,(lc_)m(vx,ly)ﬁ

n=0m=0
. <m> EY )(urc,ky)Ef,Jm(m,ly)ﬁ}
n=0m=0 :
o0 n tn
- Z Z (r?z) E) (uz, ky)E,(lC_)m(vx, ly)H
n=0m=0
oo n n o
+Z Z <m> (ux ky) (vm ly)
n=0m=0
o n n i . .
- ZZ <]> Z <T]n> {Eg)(uxyky)EJ(-_zn(vx,ly)
n=0 j=0 m=0

n

+E) (uz, ky)E (%) L, ly)}t

+y > <:,Z> {ES) (uz, ky) B (vz,ly)

O)(uz, ky) B, (v, 1)} o

Comparing the coefficients of % on both sides of the above equation, we get the
result. g

As a direct result, by applying v = v and k = [ in Theorem 3.2, we get the
following corollary.

Corollary 3.3. Forn >0, u,k € N, we have

E) (2uz, 2ky) = i( >i( >E<S uz, ky) B\ (uz, ky)

7=0 m=0

m

+ Z (") E (uz, ky) B, (uz, ky)
m=0
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If we substitute v = 1 and k& = 1 into Corollary 3.3, we have the following corollary.

Corollary 3.4. ([3]) Forn >0, we have

e = 3 (1) 3 (3) e e @)

=0 m=0

n n o
+> <m> B (,9) By (@, y).
m=0

The degenerate version of Theorem 3.2 is the following theorem.

Theorem 3.5. Forn >0, u,v,k,l € N, we have

26 ((u + v)a, (k + §)y)

S (?)[z]: <jn> (69) (uz, ky)£L©), (v, y)

j=0 m=0
—|—5 )\(ua: ky)g( ) 7,\(090,@)}](1)71*1«\

+Z( >{ Az, ky)E50) (v ) + € (u ky) €L, (v ) }

Proof. The proof is similar to that of Theorem 3.2. |

Corollary 3.6. Forn > 0, we have

e =Y (1) 3 (1) neh @

J=0

J
DN AL RN

Proof. If we substitute u = v =1 and k =1 = 1 into Theorem 3.5, we easily arrive
at the desired result. O
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